Adaptive Sampling for Best Policy Identification in MDPs

Aymen Al Marjani ${ }^{1}$ joint work with Alexandre Proutiere ${ }^{2}$
${ }^{1}$ ENS de Lyon
${ }^{2}$ KTH Royal Institute of Technology
RL Theory seminars
May 11th, 2021

Outline

(1) Introduction
(2) Lower Bound
(3) Upper bound of the characteristic time
(4) Algorithm
(5) Experiments
(6) Conclusion

Motivation

How many samples does it take to learn an optimal policy in RL ?

Infinite horizon MDPs

$$
\phi=<\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma>
$$

Infinite horizon MDPs

$$
\phi=<\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma>
$$

(1) \mathcal{S}, \mathcal{A} : Finite state and action spaces.

Infinite horizon MDPs

$\phi=<\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma>$
(1) \mathcal{S}, \mathcal{A} : Finite state and action spaces.
(2) After choosing action a at state s the agent:

- receives reward $R(s, a) \sim q_{\phi}(. \mid s, a)$ and mean $r(s, a) \triangleq \mathbb{E}_{q(\cdot \mid s, a)}[R(s, a)]$.
- makes transition to $s^{\prime} \sim p_{\phi}(. \mid s, a)$.

Figure: src:packtpub

Infinite horizon MDPs

$\phi=<\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma>$
(1) \mathcal{S}, \mathcal{A} : Finite state and action spaces.
(2) After choosing action a at state s the agent:

- receives reward $R(s, a) \sim q_{\phi}(. \mid s, a)$ and mean $r(s, a) \triangleq \mathbb{E}_{q(\cdot \mid s, a)}[R(s, a)]$.
- makes transition to $s^{\prime} \sim p_{\phi}(. \mid s, a)$.
- For simplicity, we assume q with support in $[0,1]$.

Figure: src:packtpub

Best Policy Identification

$$
\phi=<\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma>
$$

- $\gamma \in[0,1)$ is the discount factor.

Best Policy Identification

$\phi=<\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma>$

- $\gamma \in[0,1)$ is the discount factor.
- Identify a policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ maximizing the total discounted reward:

Best Policy Identification

$$
\phi=<\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma>
$$

- $\gamma \in[0,1)$ is the discount factor.
- Identify a policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ maximizing the total discounted reward:

$$
\pi_{\phi}^{\star} \in \underset{\pi}{\arg \max } \mathbb{E}_{\phi}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}^{\pi}, \pi\left(s_{t}^{\pi}\right)\right)\right]
$$

Best Policy Identification

$$
\phi=<\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma>
$$

- $\gamma \in[0,1)$ is the discount factor.
- Identify a policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ maximizing the total discounted reward:

$$
\pi_{\phi}^{\star} \in \underset{\pi}{\arg \max } \mathbb{E}_{\phi}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}^{\pi}, \pi\left(s_{t}^{\pi}\right)\right)\right]
$$

- Assumption 1: $\pi^{\star} \triangleq \pi_{\phi}^{\star}$ is unique.

Sampling schemes

- Forward model: The agent can only follow trajectories: $\left(s_{0}, a_{0}, R_{0}, s_{1}, a_{1} \ldots,\right)$ where $s_{t+1} \sim p_{\phi}\left(. \mid s_{t}, a_{t}\right)$.

Sampling schemes

- Forward model: The agent can only follow trajectories: $\left(s_{0}, a_{0}, R_{0}, s_{1}, a_{1} \ldots,\right)$ where $s_{t+1} \sim p_{\phi}\left(. \mid s_{t}, a_{t}\right)$.
- Generative model: At round t, the agent can sample any pair $\left(s_{t}, a_{t}\right)$. She then observes $\left(R_{t}, s_{t}^{\prime}\right) \sim q_{\phi}\left(. \mid s_{t}, a_{t}\right) \otimes p_{\phi}\left(. \mid s_{t}, a_{t}\right)$. Next, she can choose any other pair $\left(s_{t+1}, a_{t+1}\right)$ independently of her previous state.

Sampling schemes

- Forward model: The agent can only follow trajectories: $\left(s_{0}, a_{0}, R_{0}, s_{1}, a_{1} \ldots,\right)$ where $s_{t+1} \sim p_{\phi}\left(. \mid s_{t}, a_{t}\right)$.
- Generative model: At round t, the agent can sample any pair $\left(s_{t}, a_{t}\right)$. She then observes $\left(R_{t}, s_{t}^{\prime}\right) \sim q_{\phi}\left(. \mid s_{t}, a_{t}\right) \otimes p_{\phi}\left(. \mid s_{t}, a_{t}\right)$. Next, she can choose any other pair $\left(s_{t+1}, a_{t+1}\right)$ independently of her previous state.

In this talk, we focus on the Generative model.

$\delta-\mathrm{PC}$ algorithm

- Sampling rule: How to select next pair to sample depending on past observations: $\left(s_{t+1}, a_{t+1}\right)$ is $\mathcal{F}_{t} \triangleq \sigma\left(\left(s_{j}, a_{j}, R_{j}, s_{j}^{\prime}\right)_{1 \leq j \leq t}\right)$ measurable.

δ-PC algorithm

- Sampling rule: How to select next pair to sample depending on past observations: $\left(s_{t+1}, a_{t+1}\right)$ is $\mathcal{F}_{t} \triangleq \sigma\left(\left(s_{j}, a_{j}, R_{j}, s_{j}^{\prime}\right)_{1 \leq j \leq t}\right)$ measurable.
- Stopping rule: The algorithm stops sampling after collecting τ samples and returns $\widehat{\pi}_{\tau}^{\star}$. τ is a stopping time w.r.t. the filtration $\left(\mathcal{F}_{t}\right)_{t \geq 1}$.

δ-PC algorithm

- Sampling rule: How to select next pair to sample depending on past observations: $\left(s_{t+1}, a_{t+1}\right)$ is $\mathcal{F}_{t} \triangleq \sigma\left(\left(s_{j}, a_{j}, R_{j}, s_{j}^{\prime}\right)_{1 \leq j \leq t}\right)$ measurable.
- Stopping rule: The algorithm stops sampling after collecting τ samples and returns $\widehat{\pi}_{\tau}^{\star}$. τ is a stopping time w.r.t. the filtration $\left(\mathcal{F}_{t}\right)_{t \geq 1}$.
- $\delta-\mathrm{PC}$ algorithm: $\mathbb{P}_{\phi}\left(\widehat{\pi}_{\tau}^{\star} \neq \pi^{\star}\right) \leq \delta$.

δ-PC algorithm

- Sampling rule: How to select next pair to sample depending on past observations: $\left(s_{t+1}, a_{t+1}\right)$ is $\mathcal{F}_{t} \triangleq \sigma\left(\left(s_{j}, a_{j}, R_{j}, s_{j}^{\prime}\right)_{1 \leq j \leq t}\right)$ measurable.
- Stopping rule: The algorithm stops sampling after collecting τ samples and returns $\widehat{\pi}_{\tau}^{\star}$. τ is a stopping time w.r.t. the filtration $\left(\mathcal{F}_{t}\right)_{t \geq 1}$.
- $\delta-\mathrm{PC}$ algorithm: $\mathbb{P}_{\phi}\left(\widehat{\pi}_{\tau}^{\star} \neq \pi^{\star}\right) \leq \delta$.
- Identify π^{\star} as fast as possible!

$\delta-\mathrm{PC}$ algorithm

- Sampling rule: How to select next pair to sample depending on past observations: $\left(s_{t+1}, a_{t+1}\right)$ is $\mathcal{F}_{t} \triangleq \sigma\left(\left(s_{j}, a_{j}, R_{j}, s_{j}^{\prime}\right)_{1 \leq j \leq t}\right)$ measurable.
- Stopping rule: The algorithm stops sampling after collecting τ samples and returns $\widehat{\pi}_{\tau}^{\star}$. τ is a stopping time w.r.t. the filtration $\left(\mathcal{F}_{t}\right)_{t \geq 1}$.
- $\delta-\mathrm{PC}$ algorithm: $\mathbb{P}_{\phi}\left(\widehat{\pi}_{\tau}^{\star} \neq \pi^{\star}\right) \leq \delta$.
- Identify π^{\star} as fast as possible!
\Longrightarrow Algorithm with minimal sample complexity τ

Learning: be specific!

Two kinds of guarantees:

Learning: be specific!

Two kinds of guarantees:

- Minimax over a set of MDPs Φ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \sup _{\phi \in \Phi} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

Learning: be specific!

Two kinds of guarantees:

- Minimax over a set of MDPs Φ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \sup _{\phi \in \Phi} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

- Minimax lower bounds often come from pathological examples. Real world scenarios are not that hard (unless in adversarial settings).

Learning: be specific!

Two kinds of guarantees:

- Minimax over a set of MDPs Φ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \sup _{\phi \in \Phi} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

- Minimax lower bounds often come from pathological examples. Real world scenarios are not that hard (unless in adversarial settings).
- Algorithms that sample state-actions uniformly at random are sufficient to be minimax optimal !

Learning: be specific!

Two kinds of guarantees:

- Minimax over a set of MDPs Φ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \sup _{\phi \in \Phi} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

- Instance-specific: For a given ϕ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

Learning: be specific!

Two kinds of guarantees:

- Minimax over a set of MDPs Φ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \sup _{\phi \in \Phi} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

- Instance-specific: For a given ϕ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

Learning: be specific!

Two kinds of guarantees:

- Minimax over a set of MDPs Φ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \sup _{\phi \in \Phi} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

- Instance-specific: For a given ϕ :

$$
\inf _{\mathbb{A}: \delta-\mathrm{PC}} \mathbb{E}_{\phi, \mathbb{A}}\left[\tau_{\delta}\right]
$$

- We seek algorithms that can adapt to the hardness of the instance.

Related work

(1) Minimax Approach:

- Introduced by [Kearns and Singh, 1999].

Related work

(1) Minimax Approach:

- Introduced by [Kearns and Singh, 1999].
- Lower bound by [Azar et al., 2013]: $\mathcal{O}\left(\frac{S A \log (S A / \delta)}{\varepsilon^{2}(1-\gamma)^{3}}\right)$ samples to get ε-optimal policy.

Related work

(1) Minimax Approach:

- Introduced by [Kearns and Singh, 1999].
- Lower bound by [Azar et al., 2013]: $\mathcal{O}\left(\frac{S A \log (S A / \delta)}{\varepsilon^{2}(1-\gamma)^{3}}\right)$ samples to get ε-optimal policy.
- variety of minimax-optimal algorithms (model-free and model based): [Azar et al., 2013, Sidford et al., 2018, Agarwal et al., 2020, Li et al., 2020]

Related work

(1) Minimax Approach:

- Introduced by [Kearns and Singh, 1999].
- Lower bound by [Azar et al., 2013]: $\mathcal{O}\left(\frac{S A \log (S A / \delta)}{\varepsilon^{2}(1-\gamma)^{3}}\right)$ samples to get ε-optimal policy.
- variety of minimax-optimal algorithms (model-free and model based): [Azar et al., 2013, Sidford et al., 2018, Agarwal et al., 2020, Li et al., 2020]
(2) Problem-specific approach:
- Multi-armed Bandit:
- [Even-Dar and Mansour, 2003, Gabillon et al., 2012, Kalyanakrishnan et al., 2012] Bounds depending on the gaps.

Related work

(1) Minimax Approach:

- Introduced by [Kearns and Singh, 1999].
- Lower bound by [Azar et al., 2013]: $\mathcal{O}\left(\frac{S A \log (S A / \delta)}{\varepsilon^{2}(1-\gamma)^{3}}\right)$ samples to get ε-optimal policy.
- variety of minimax-optimal algorithms (model-free and model based): [Azar et al., 2013, Sidford et al., 2018, Agarwal et al., 2020, Li et al., 2020]
(2) Problem-specific approach:
- Multi-armed Bandit:
- [Even-Dar and Mansour, 2003, Gabillon et al., 2012, Kalyanakrishnan et al., 2012] Bounds depending on the gaps.
- [Garivier and Kaufmann, 2016] complete characterization for exponential family.

Related work

(1) Minimax Approach:

- Introduced by [Kearns and Singh, 1999].
- Lower bound by [Azar et al., 2013]: $\mathcal{O}\left(\frac{S A \log (S A / \delta)}{\varepsilon^{2}(1-\gamma)^{3}}\right)$ samples to get ε-optimal policy.
- variety of minimax-optimal algorithms (model-free and model based): [Azar et al., 2013, Sidford et al., 2018, Agarwal et al., 2020, Li et al., 2020]
(2) Problem-specific approach:
- Multi-armed Bandit:
- [Even-Dar and Mansour, 2003, Gabillon et al., 2012, Kalyanakrishnan et al., 2012] Bounds depending on the gaps.
- [Garivier and Kaufmann, 2016] complete characterization for exponential family.
- MDPs: [Zanette et al., 2019] proposed BESPOKE, first algorithm with problem-specific guarantees.

Related work: BESPOKE

(1) Principle: Minimize a weighted sum of confidence intervals over state-action pairs.
(2) Advantages:

Related work: BESPOKE

(1) Principle: Minimize a weighted sum of confidence intervals over state-action pairs.
(2) Advantages:

- Provides a clear stopping rule to find an ε-optimal policy.

Related work: BESPOKE

(1) Principle: Minimize a weighted sum of confidence intervals over state-action pairs.
(2) Advantages:

- Provides a clear stopping rule to find an ε-optimal policy.
- First problem-specific bound, w.h.p:

$$
\begin{aligned}
\tau_{\delta} \leq \tilde{\mathcal{O}}(& \sum_{s \in \mathcal{S}} \min \left(\frac{1}{(1-\gamma)^{3} \Delta_{\text {min }}^{2}}, \frac{\operatorname{Var}_{\left(s, \pi^{*}(s)\right)}[R]+\gamma^{2} \operatorname{Var}_{p\left(s, \pi^{*}(s)\right)}\left[V_{\phi}^{\star}\right]}{\Delta_{\text {min }}^{2}}\right) \\
& \left.+\sum_{s, a \neq \pi^{\star}(s)} \frac{\operatorname{Var}[R(s, a)]+\gamma^{2} \operatorname{Var}_{p(s, a)}\left[V_{\phi}^{\star}\right]}{\Delta_{s a}^{2}}+\frac{S^{2} A}{(1-\gamma)^{2}}\right)
\end{aligned}
$$

Related work: BESPOKE

(1) Principle: Minimize a weighted sum of confidence intervals over state-action pairs.
(2) Advantages:

- Provides a clear stopping rule to find an ε-optimal policy.
- First problem-specific bound, w.h.p:

$$
\begin{aligned}
\tau_{\delta} \leq \tilde{\mathcal{O}}(& \sum_{s \in \mathcal{S}} \min \left(\frac{1}{(1-\gamma)^{3} \Delta_{\text {min }}^{2}}, \frac{\operatorname{Var}_{\left(s, \pi^{*}(s)\right)}[R]+\gamma^{2} \operatorname{Var}_{p\left(s, \pi^{*}(s)\right)}\left[V_{\phi}^{\star}\right]}{\Delta_{\text {min }}^{2}}\right) \\
& \left.+\sum_{s, a \neq \pi^{\star}(s)} \frac{\operatorname{Var}[R(s, a)]+\gamma^{2} \operatorname{Var}_{p(s, a)}\left[V_{\phi}^{\star}\right]}{\Delta_{s a}^{2}}+\frac{S^{2} A}{(1-\gamma)^{2}}\right)
\end{aligned}
$$

(3) Drawbacks:

- Solves a convex problem at every step.

Related work: BESPOKE

(1) Principle: Minimize a weighted sum of confidence intervals over state-action pairs.
(2) Advantages:

- Provides a clear stopping rule to find an ε-optimal policy.
- First problem-specific bound, w.h.p:

$$
\begin{aligned}
\tau_{\delta} \leq \tilde{\mathcal{O}}(& \sum_{s \in \mathcal{S}} \min \left(\frac{1}{(1-\gamma)^{3} \Delta_{\text {min }}^{2}}, \frac{\operatorname{Var}_{\left(s, \pi^{*}(s)\right)}[R]+\gamma^{2} \operatorname{Var}_{p\left(s, \pi^{*}(s)\right)}\left[V_{\phi}^{\star}\right]}{\Delta_{\text {min }}^{2}}\right) \\
& \left.+\sum_{s, a \neq \pi^{\star}(s)} \frac{\operatorname{Var}[R(s, a)]+\gamma^{2} \operatorname{Var}_{p(s, a)}\left[V_{\phi}^{\star}\right]}{\Delta_{s a}^{2}}+\frac{S^{2} A}{(1-\gamma)^{2}}\right)
\end{aligned}
$$

(3) Drawbacks:

- Solves a convex problem at every step.
- Large burn-in phase: $\Omega\left(\frac{S^{2} A \log (1 / \delta)}{(1-\gamma)^{2}}\right)$.

Information-Theoretical lower bound

Information-Theoretical lower bound

Define:

- The set of alternative $\operatorname{MDPs} \operatorname{Alt}(\phi)=\left\{\psi: \pi^{\star}\right.$ is not optimal in $\left.\psi\right\}$.

Information-Theoretical lower bound

Define:

- The set of alternative MDPs $\operatorname{Alt}(\phi)=\left\{\psi: \pi^{\star}\right.$ is not optimal in $\left.\psi\right\}$.
- Σ the simplex of $\mathbb{R}^{S A}$.

Information-Theoretical lower bound

Define:

- The set of alternative MDPs $\operatorname{Alt}(\phi)=\left\{\psi: \pi^{\star}\right.$ is not optimal in $\left.\psi\right\}$.
- Σ the simplex of $\mathbb{R}^{S A}$.
- $\mathrm{KL}_{\phi \mid \psi}(s, a)=\mathrm{KL}\left(q_{\phi}(s, a), q_{\psi}(s, a)\right)+\mathrm{KL}\left(p_{\phi}(s, a), p_{\psi}(s, a)\right)$

Information-Theoretical lower bound

Define:

- The set of alternative MDPs $\operatorname{Alt}(\phi)=\left\{\psi: \pi^{\star}\right.$ is not optimal in $\left.\psi\right\}$.
- Σ the simplex of $\mathbb{R}^{S A}$.
- $\mathrm{KL}_{\phi \mid \psi}(s, a)=\mathrm{KL}\left(q_{\phi}(s, a), q_{\psi}(s, a)\right)+\mathrm{KL}\left(p_{\phi}(s, a), p_{\psi}(s, a)\right)$

Proposition 1

The sample complexity of any δ-PC algorithm satisfies: for any ϕ with a unique optimal policy,

$$
\mathbb{E}_{\phi}[\tau] \geq T^{\star}(\phi) \log (1 / 2.4 \delta)
$$

$$
\begin{equation*}
\text { where } T^{\star}(\phi)^{-1}=\sup _{\omega \in \Sigma} \inf _{\psi \in \operatorname{Alt}(\phi)} \sum_{s, a} \omega_{s a} \mathrm{KL}_{\phi \mid \psi}(s, a) . \tag{1}
\end{equation*}
$$

Solving the lower bound program?

Solving the lower bound program?

- By definition: $\operatorname{Alt}(\phi)=\left\{\psi: \exists(s, \pi) \in \mathcal{S} \times \Pi, V_{\psi}^{\pi}(s)>V_{\psi}^{\pi *}(s)\right\}$.

Solving the lower bound program?

- By definition: $\operatorname{Alt}(\phi)=\left\{\psi: \exists(s, \pi) \in \mathcal{S} \times \Pi, V_{\psi}^{\pi}(s)>V_{\psi}^{\pi *}(s)\right\}$.
- Involves many parameters of ψ :

$$
\left(r(x, \pi(x)), p(x, \pi(x)), r\left(x, \pi^{*}(x)\right), p\left(x, \pi^{*}(x)\right)\right)_{x \in \mathcal{S}}
$$

Solving the lower bound program?

- By definition: $\operatorname{Alt}(\phi)=\left\{\psi: \exists(s, \pi) \in \mathcal{S} \times \Pi, V_{\psi}^{\pi}(s)>V_{\psi}^{\pi *}(s)\right\}$.
- Involves many parameters of ψ :

$$
\left(r(x, \pi(x)), p(x, \pi(x)), r\left(x, \pi^{*}(x)\right), p\left(x, \pi^{*}(x)\right)\right)_{x \in \mathcal{S}}
$$

\Longrightarrow We need further simplifcation.

Solving the lower bound program?

- By definition: $\operatorname{Alt}(\phi)=\left\{\psi: \exists(s, \pi) \in \mathcal{S} \times \Pi, V_{\psi}^{\pi}(s)>V_{\psi}^{\pi *}(s)\right\}$.
- Involves many parameters of ψ :

$$
\left(r(x, \pi(x)), p(x, \pi(x)), r\left(x, \pi^{*}(x)\right), p\left(x, \pi^{*}(x)\right)\right)_{x \in \mathcal{S}}
$$

\Longrightarrow We need further simplifcation.

Lemma 2

The set of alternative MDPs can be decomposed as follows:

$$
\operatorname{Alt}(\phi)=\bigcup_{(s, a): a \neq \pi^{\star}(s)}\left\{\psi: Q_{\psi}^{\pi^{\star}}(s, a)>V_{\psi}^{\pi^{\star}}(s)\right\}
$$

Solving the lower bound program?

- By definition: $\operatorname{Alt}(\phi)=\left\{\psi: \exists(s, \pi) \in \mathcal{S} \times \Pi, V_{\psi}^{\pi}(s)>V_{\psi}^{\pi *}(s)\right\}$.
- Involves many parameters of ψ :

$$
\left(r(x, \pi(x)), p(x, \pi(x)), r\left(x, \pi^{*}(x)\right), p\left(x, \pi^{*}(x)\right)\right)_{x \in \mathcal{S}}
$$

\Longrightarrow We need further simplifcation.

Lemma 2

The set of alternative MDPs can be decomposed as follows:

$$
\operatorname{Alt}(\phi)=\bigcup_{(s, a): a \neq \pi^{\star}(s)}\left\{\psi: Q_{\psi}^{\pi^{\star}}(s, a)>V_{\psi}^{\pi^{\star}}(s)\right\} .
$$

- In contrast with $Q_{\phi}^{\pi^{\star}}(s, a)<V_{\phi}^{\pi^{\star}}(s)$, for $a \neq \pi^{\star}(s)$.

Solving the lower bound program?

- By definition: $\operatorname{Alt}(\phi)=\left\{\psi: \exists(s, \pi) \in \mathcal{S} \times \Pi, V_{\psi}^{\pi}(s)>V_{\psi}^{\pi *}(s)\right\}$.
- Involves many parameters of ψ :

$$
\left(r(x, \pi(x)), p(x, \pi(x)), r\left(x, \pi^{*}(x)\right), p\left(x, \pi^{*}(x)\right)\right)_{x \in \mathcal{S}}
$$

\Longrightarrow We need further simplifcation.

Lemma 2

The set of alternative MDPs can be decomposed as follows:

$$
\operatorname{Alt}(\phi)=\bigcup_{(s, a): a \neq \pi^{\star}(s)}\left\{\psi: Q_{\psi}^{\pi^{\star}}(s, a)>V_{\psi}^{\pi^{\star}}(s)\right\} .
$$

- In contrast with $Q_{\phi}^{\pi^{\star}}(s, a)<V_{\phi}^{\pi^{\star}}(s)$, for $a \neq \pi^{\star}(s)$.
- Only involves $(r(s, a), p(s, a))$ and $\left(r\left(x, \pi^{*}(x)\right), p\left(x, \pi^{*}(x)\right)\right)_{x \in \mathcal{S}}$ in ψ.

IT Lower bound: Intractable!

IT Lower bound: Intractable!

- $Q\left(s_{1}, a_{i}\right)=\frac{r_{i}}{1-\gamma p_{i}}, i=1,2$.

IT Lower bound: Intractable!

- $Q\left(s_{1}, a_{i}\right)=\frac{r_{i}}{1-\gamma p_{i}}, i=1,2$.
- Can easily construct ψ and $\bar{\psi}$ such that:

IT Lower bound: Intractable!

- $Q\left(s_{1}, a_{i}\right)=\frac{r_{i}}{1-\gamma p_{i}}, i=1,2$.
- Can easily construct ψ and $\bar{\psi}$ such that:
- Both ψ and $\bar{\psi}$ satisfy $\frac{r_{1}}{1-\gamma p_{1}}>\frac{r_{2}}{1-\gamma p_{2}}$.

IT Lower bound: Intractable!

- $Q\left(s_{1}, a_{i}\right)=\frac{r_{i}}{1-\gamma p_{i}}, i=1,2$.
- Can easily construct ψ and $\bar{\psi}$ such that:
- Both ψ and $\bar{\psi}$ satisfy $\frac{r_{1}}{1-\gamma p_{1}}>\frac{r_{2}}{1-\gamma p_{2}}$.
- $\phi=\frac{\psi+\bar{\psi}}{2}$ satisfies $\frac{r_{1}}{1-\gamma p_{1}}<\frac{r_{2}}{1-\gamma p_{2}}$.

IT Lower bound: Intractable!

- $\operatorname{Alt}(\phi)$ and $\operatorname{Alt}_{s_{1} a_{1}}(\phi)$ are not convex.

IT Lower bound: Intractable!

- $\operatorname{Alt}(\phi)$ and $\operatorname{Alt}_{s_{1} a_{1}}(\phi)$ are not convex.
- \Longrightarrow The sub-problem $\inf _{\psi \in \operatorname{Alt}(\phi)} \sum_{s, a} \omega_{s a} \mathrm{KL}_{\phi \mid \psi}(s, a)$ is non-convex.

IT Lower bound: MDP vs MAB

	MAB	MDP
Parameters	$\mu_{1}>\ldots \geq \mu_{K}$	$(r(s, a), p(s, a))_{s, a}$
Objective	Identify $a^{\star}=\underset{a}{\arg \max } \mu_{a}$	$\pi^{\star}=\underset{\pi}{\arg \max }\left(I-\gamma P_{\pi}\right)^{-1} r_{\pi}$
Alternative instances	$\bigcup_{a \neq 1}\left\{\lambda: \lambda_{a}>\lambda_{1}\right\}$ union of convex sets	$\bigcup_{\left(s, a \neq \pi^{\star}(s)\right.}\left\{\psi: Q_{\psi}^{\pi^{\star}}(s, a)>V_{\psi}^{\pi^{\star}}(s)\right\}$ Not union of convex
IT lower bound	Tractable	Not Tractable

Upper bound: Idea

Define $T(\phi, \omega)^{-1} \triangleq \inf _{\psi \in \operatorname{Alt}(\phi)} \sum_{s, a} \omega_{s a} \mathrm{KL}_{\phi \mid \psi}(s, a)$.

Upper bound: Idea

Define $T(\phi, \omega)^{-1} \triangleq \inf _{\psi \in \operatorname{Alt}(\phi)} \sum_{s, a} \omega_{s a} \mathrm{KL}_{\phi \mid \psi}(s, a)$.

Figure: $\operatorname{Alt}(\phi)$: Non-convex boundary

Upper bound: Idea

Define $T(\phi, \omega)^{-1} \triangleq \inf _{\psi \in \operatorname{Alt}(\phi)} \sum_{s, a} \omega_{s a} \mathrm{KL}_{\phi \mid \psi}(s, a)$.

Figure: KL Ball

Upper bound of the characteristic time

Theorem 1 (Upper bound of minimal sample complexity)

For all vectors ω in the simplex:

$$
T(\phi, \omega) \leq U(\phi, \omega) \triangleq \max _{s, a \neq \pi^{\star}(s)} \frac{T_{1}(s, a ; \phi)+T_{2}(s, a ; \phi)}{\omega_{s a}}+\frac{T_{3}(\phi)+T_{4}(\phi)}{\min _{s} \omega_{s, \pi^{\star}(s)}}
$$

$$
\text { where }\left\{\begin{array}{l}
T_{1}(s, a ; \phi)=\frac{2}{\Delta_{s a}^{2}}, \\
T_{2}(s, a ; \phi)=\max \left(\frac{16 \operatorname{Var}_{p_{\phi}(s, a)}\left[V_{\phi}^{\star}\right]}{\Delta_{s a}^{2}}, \frac{60 \operatorname{sc}\left[V_{\phi}^{\star}\right]^{4 / 3}}{\Delta_{s a}^{4 / 3}}\right), \\
T_{3}(\phi)=\frac{2}{\left[\Delta_{\min }(\phi)(1-\gamma)\right]^{2}}, \\
T_{4}(\phi) \leq \frac{27}{\Delta_{\min }(\phi)^{2}(1-\gamma)^{3}}=\mathcal{O}\left(\frac{\text { Minimax lower bound }}{S A}\right)
\end{array}\right.
$$

Upper bound of $T(\phi, \omega)$: sketch of the proof

- Using Lemma 2 :

$$
T(\phi, \omega)^{-1}=\min _{s, a \neq \pi^{\star}(s)} \inf _{\psi \in \operatorname{Alt}_{s a}(\phi)} \omega_{s a} \mathrm{KL}_{\phi \mid \psi}(s, a)+\sum_{x} \omega_{x, \pi^{\star}(x)} \mathrm{KL}_{\phi \mid \psi}\left(x, \pi^{\star}(x)\right)
$$ where $\operatorname{Alt}_{s a}(\phi) \triangleq\left\{\psi: Q_{\psi}^{\pi^{\star}}(s, a)>V_{\psi}^{\pi^{\star}}(s)\right\}$.

Upper bound of $T(\phi, \omega)$: sketch of the proof

- Using Lemma 2 :

$$
T(\phi, \omega)^{-1}=\min _{s, a \neq \pi^{\star}(s)} \inf _{\psi \in \operatorname{Alt}_{s a}(\phi)} \omega_{s \mathrm{~s}} \mathrm{KL}_{\phi \mid \psi}(s, a)+\sum_{x} \omega_{x, \pi^{\star}(x)} \mathrm{KL}_{\phi \mid \psi}\left(x, \pi^{\star}(x)\right) .
$$

where $\operatorname{Alt}_{s a}(\phi) \triangleq\left\{\psi: Q_{\psi}^{\pi^{*}}(s, a)>V_{\psi}^{\pi^{*}}(s)\right\}$.

- Introduce the suboptimality gaps: $\Delta_{s a} \triangleq V_{\phi}^{\pi^{\star}}(s)-Q_{\phi}^{\pi^{\star}}(s, a)$:

$$
\left(Q_{\psi}^{\pi^{\star}}-Q_{\phi}^{\pi^{\star}}\right)(s, a)-\left(V_{\psi}^{\pi^{\star}}-V_{\phi}^{\pi^{\star}}\right)(s)>\Delta_{s a} .
$$

Upper bound of $T(\phi, \omega)$: sketch of the proof

- Using Lemma 2 :

$$
T(\phi, \omega)^{-1}=\min _{s, a \neq \pi^{\star}(s)} \inf _{\psi \in \operatorname{Alt}_{s a}(\phi)} \omega_{s a} \mathrm{KL}_{\phi \mid \psi}(s, a)+\sum_{x} \omega_{x, \pi^{\star}(x)} \mathrm{KL}_{\phi \mid \psi}\left(x, \pi^{\star}(x)\right) .
$$

where $\operatorname{Alt}_{s a}(\phi) \triangleq\left\{\psi: Q_{\psi}^{\pi^{\star}}(s, a)>V_{\psi}^{\pi^{\star}}(s)\right\}$.

- Introduce the suboptimality gaps: $\Delta_{s a} \triangleq V_{\phi}^{\pi^{\star}}(s)-Q_{\phi}^{\pi^{\star}}(s, a)$:

$$
\left(Q_{\psi}^{\pi^{\star}}-Q_{\phi}^{\pi^{\star}}\right)(s, a)-\left(V_{\psi}^{\pi^{\star}}-V_{\phi}^{\pi^{\star}}\right)(s)>\Delta_{s a} .
$$

- Rewrite the condition in terms of the differences in kernels:

$$
d r(s, a)+\gamma d p(s, a)^{\top} V_{\phi}^{\pi^{*}}+\gamma\left[p_{\psi}(s, a)-\mathbb{1}(s)\right] d V^{\pi^{*}}>\Delta_{s a}
$$

where

$$
d r(s, a)=r_{\psi}(s, a)-r_{\phi}(s, a), d V^{\pi^{*}}(s, a)=V_{\psi}^{\pi^{*}}(s, a)-V_{\phi}^{\pi^{*}}(s, a) \text { etc }
$$

Upper bound of $T(\phi, \omega)$: sketch of the proof

- $d r(s, a)+\gamma d p(s, a)^{\top} V_{\phi}^{\pi^{*}}+\gamma\left[p_{\psi}(s, a)-\mathbb{1}(s)\right] d V^{\pi^{*}}>\Delta_{s a}$

Upper bound of $T(\phi, \omega)$: sketch of the proof

- $d r(s, a)+\gamma d p(s, a)^{\top} V_{\phi}^{\pi^{*}}+\gamma\left[p_{\psi}(s, a)-\mathbb{1}(s)\right] d V^{\pi^{*}}>\Delta_{s a}$
- $d V \pi^{*}=A+B$ where:

$$
\begin{aligned}
& A \triangleq\left(I-\gamma P_{\psi}^{\pi^{\star}}\right)^{-1}\left[r_{\psi}^{\pi^{\star}}-r_{\phi}^{\pi^{\star}}\right] \\
& B \triangleq\left[\left(I-\gamma P_{\psi}^{\pi^{\star}}\right)^{-1}-\left(I-\gamma P_{\phi}^{\pi^{\star}}\right)^{-1}\right] r_{\phi}^{\pi^{\star}}
\end{aligned}
$$

Upper bound of $T(\phi, \omega)$: sketch of the proof

- $d r(s, a)+\gamma d p(s, a)^{\top} V_{\phi}^{\pi^{*}}+\gamma\left[p_{\psi}(s, a)-\mathbb{1}(s)\right] d V^{\pi^{*}}>\Delta_{s a}$
- $d V V^{*}=A+B$ where:

$$
\begin{aligned}
& A \triangleq\left(I-\gamma P_{\psi}^{\pi^{\star}}\right)^{-1}\left[r_{\psi}^{\pi^{\star}}-r_{\phi}^{\pi^{\star}}\right] \\
& B \triangleq\left[\left(I-\gamma P_{\psi}^{\pi^{\star}}\right)^{-1}-\left(I-\gamma P_{\phi}^{\pi^{\star}}\right)^{-1}\right] r_{\phi}^{\pi^{\star}}
\end{aligned}
$$

- $d r(s, a)=\alpha_{1} \Delta_{s a}, d p(s, a)=\alpha_{2} \Delta_{s a}, A=\alpha_{3} \Delta_{s a}, B=\alpha_{4} \Delta_{s a}$, with $\sum_{i} \alpha_{i}>1$

Upper bound of $T(\phi, \omega)$: sketch of the proof

- $d r(s, a)+\gamma d p(s, a)^{\top} V_{\phi}^{\pi^{*}}+\gamma\left[p_{\psi}(s, a)-\mathbb{1}(s)\right] d V^{\pi^{*}}>\Delta_{s a}$
- $d V V^{*}=A+B$ where:

$$
\begin{aligned}
& A \triangleq\left(I-\gamma P_{\psi}^{\pi^{\star}}\right)^{-1}\left[r_{\psi}^{\pi^{\star}}-r_{\phi}^{\pi^{\star}}\right] \\
& B \triangleq\left[\left(I-\gamma P_{\psi}^{\pi^{\star}}\right)^{-1}-\left(I-\gamma P_{\phi}^{\pi^{\star}}\right)^{-1}\right] r_{\phi}^{\pi^{\star}}
\end{aligned}
$$

- $d r(s, a)=\alpha_{1} \Delta_{s a}, d p(s, a)=\alpha_{2} \Delta_{s a}, A=\alpha_{3} \Delta_{s a}, B=\alpha_{4} \Delta_{s a}$, with $\sum_{i} \alpha_{i}>1$
- Use Pinsker inequality and transportation lemmas to relate $d r, d p$ to $\mathrm{KL}\left(q_{\phi}, q_{\psi}\right), \mathrm{KL}\left(p_{\phi}, p_{\psi}\right)$:

$$
\frac{1}{2}\left(\alpha_{1} \Delta_{s a}\right)^{2} \leq K L\left(q_{\phi}(s, a), q_{\psi}(s, a)\right) .
$$

Upper bound: sketch of the proof

- Use IT inequalities to relate $d r, d p$ to $\operatorname{KL}\left(q_{\phi}, q_{\psi}\right), \operatorname{KL}\left(p_{\phi}, p_{\psi}\right)$:

$$
\begin{aligned}
\frac{\alpha_{1}^{2}}{T_{1}} & \leq K L\left(q_{\phi}(\cdot \mid s, a), q_{\psi}(s, a)\right) \\
\frac{\alpha_{2}^{2}}{T_{2}} & \leq K L\left(p_{\phi}(\cdot \mid s, a), p_{\psi}(s, a)\right) \\
\frac{\alpha_{3}^{2}}{T_{3}} & \leq \max _{s} K L\left(q_{\phi}\left(\cdot \mid s, \pi^{*}(s)\right), q_{\psi}\left(\cdot \mid s, \pi^{*}(s)\right)\right) . \\
\frac{\alpha_{4}^{2}}{T_{4}} & \leq \max _{s} K L\left(p_{\phi}\left(s, \pi^{*}(s)\right), p_{\psi}\left(s, \pi^{*}(s)\right)\right) .
\end{aligned}
$$

Upper bound: sketch of the proof

- Use IT inequalities to relate $d r, d p$ to $\operatorname{KL}\left(q_{\phi}, q_{\psi}\right), \mathrm{KL}\left(p_{\phi}, p_{\psi}\right)$:

$$
\begin{aligned}
& \frac{\alpha_{1}^{2}}{T_{1}} \leq K L\left(q_{\phi}(\cdot \mid s, a), q_{\psi}(s, a)\right) \\
& \frac{\alpha_{2}^{2}}{T_{2}} \leq K L\left(p_{\phi}(\cdot \mid s, a), p_{\psi}(s, a)\right) \\
& \frac{\alpha_{3}^{2}}{T_{3}} \leq \max _{s} K L\left(q_{\phi}\left(\cdot \mid s, \pi^{*}(s)\right), q_{\psi}\left(\cdot \mid s, \pi^{*}(s)\right)\right) . \\
& \frac{\alpha_{4}^{2}}{T_{4}} \leq \max _{s} K L\left(p_{\phi}\left(s, \pi^{*}(s)\right), p_{\psi}\left(s, \pi^{*}(s)\right)\right) .
\end{aligned}
$$

- Sum-up the bounds and optimize over α.

Upper bound: sketch of the proof

- Use IT inequalities to relate $d r, d p$ to $\operatorname{KL}\left(q_{\phi}, q_{\psi}\right), \mathrm{KL}\left(p_{\phi}, p_{\psi}\right)$:

$$
\begin{aligned}
& \frac{\alpha_{1}^{2}}{T_{1}} \leq K L\left(q_{\phi}(\cdot \mid s, a), q_{\psi}(s, a)\right) \\
& \frac{\alpha_{2}^{2}}{T_{2}} \leq K L\left(p_{\phi}(\cdot \mid s, a), p_{\psi}(s, a)\right) \\
& \frac{\alpha_{3}^{2}}{T_{3}} \leq \max _{s} K L\left(q_{\phi}\left(\cdot \mid s, \pi^{*}(s)\right), q_{\psi}\left(\cdot \mid s, \pi^{*}(s)\right)\right) . \\
& \frac{\alpha_{4}^{2}}{T_{4}} \leq \max _{s} K L\left(p_{\phi}\left(s, \pi^{*}(s)\right), p_{\psi}\left(s, \pi^{*}(s)\right)\right) .
\end{aligned}
$$

- Sum-up the bounds and optimize over α.
- Gives a lower bound of $T(\phi, \omega)^{-1}=$

$$
\min _{s, a \neq \pi^{\star}(s)} \inf _{\psi \in \operatorname{Alt}_{s a}(\phi)} \omega_{s a} \mathrm{KL}_{\phi \mid \psi}(s, a)+\sum_{x} \omega_{x, \pi^{\star}(x)} \mathrm{KL}_{\phi \mid \psi}\left(x, \pi^{\star}(x)\right) .
$$

KLB-TS: Sampling rule

KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:

$$
\bar{\omega}(\phi)=\underset{\omega \in \Sigma}{\arg \inf } \max _{(s, a): a \neq \pi^{*}(s)} \frac{T_{1}(s, a ; \phi)+T_{2}(s, a ; \phi)}{\omega_{s a}}+\frac{T_{3}(\phi)+T_{4}(\phi)}{\min _{s} \omega_{s, \pi^{\star}(s)}}
$$

are easy to compute!

KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:

$$
\bar{\omega}(\phi)=\underset{\omega \in \Sigma}{\arg \inf } \max _{(s, a): a \neq \pi^{*}(s)} \frac{T_{1}(s, a ; \phi)+T_{2}(s, a ; \phi)}{\omega_{s a}}+\frac{T_{3}(\phi)+T_{4}(\phi)}{\min _{s} \omega_{s, \pi^{\star}(s)}}
$$

are easy to compute !

- $\bar{\omega}_{s a} \propto \frac{1+\operatorname{Var}_{p_{\phi}(s, a)}\left[V_{\phi}^{\star}\right]}{\Delta_{s, a}^{2}}$.

KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:

$$
\bar{\omega}(\phi)=\underset{\omega \in \Sigma}{\arg \inf } \max _{(s, a): a \neq \pi^{*}(s)} \frac{T_{1}(s, a ; \phi)+T_{2}(s, a ; \phi)}{\omega_{s a}}+\frac{T_{3}(\phi)+T_{4}(\phi)}{\min _{s} \omega_{s, \pi^{*}(s)}}
$$

are easy to compute!

- $\bar{\omega}_{s a} \propto \frac{1+\operatorname{Var}_{p_{\phi}(s, a)}\left[V_{\phi}^{\star}\right]}{\Delta_{s, a}^{2}}$.
- $\bar{\omega}_{s, \pi^{*}(s)} \propto \frac{1+\operatorname{Var}_{\max }^{\star}\left[V_{\phi}^{\star}\right]}{\Delta_{\text {min }}^{2}(1-\gamma)^{2}}$.

KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:

$$
\bar{\omega}(\phi)=\underset{\omega \in \Sigma}{\arg \inf } \max _{(s, a): a \neq \pi^{*}(s)} \frac{T_{1}(s, a ; \phi)+T_{2}(s, a ; \phi)}{\omega_{s a}}+\frac{T_{3}(\phi)+T_{4}(\phi)}{\min _{s} \omega_{s, \pi^{\star}(s)}}
$$

are easy to compute!

- Use C-Tracking [Garivier and Kaufmann, 2016]:

KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:

$$
\bar{\omega}(\phi)=\underset{\omega \in \Sigma}{\arg \inf } \max _{(s, a): a \neq \pi^{*}(s)} \frac{T_{1}(s, a ; \phi)+T_{2}(s, a ; \phi)}{\omega_{s a}}+\frac{T_{3}(\phi)+T_{4}(\phi)}{\min _{s} \omega_{s, \pi^{\star}(s)}}
$$

are easy to compute!

- Use C-Tracking [Garivier and Kaufmann, 2016]:
- Project $\bar{\omega}\left(\widehat{\phi}_{t}\right)$ on $\left\{\omega \in \Sigma: \forall(s, a), \omega_{\text {sa }} \geq \frac{1}{\sqrt{t}}\right\}$ to get $\tilde{\omega}\left(\widehat{\phi}_{t}\right)$.

KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:
$\bar{\omega}(\phi)=\underset{\omega \in \Sigma}{\arg \inf } \max _{(s, a): a \neq \pi^{*}(s)} \frac{T_{1}(s, a ; \phi)+T_{2}(s, a ; \phi)}{\omega_{s a}}+\frac{T_{3}(\phi)+T_{4}(\phi)}{\min _{s} \omega_{s, \pi^{\star}(s)}}$
are easy to compute!
- Use C-Tracking [Garivier and Kaufmann, 2016]:
- Project $\bar{\omega}\left(\widehat{\phi}_{t}\right)$ on $\left\{\omega \in \Sigma: \forall(s, a), \omega_{s a} \geq \frac{1}{\sqrt{t}}\right\}$ to get $\tilde{\omega}\left(\widehat{\phi}_{t}\right)$.
- $\left(s_{t+1}, a_{t+1}\right) \in \underset{(s, a) \in \mathcal{S} \times \mathcal{A}}{\arg \max } \sum_{s=1}^{t} \tilde{\omega}_{s a}\left(\widehat{\phi}_{s}\right)-N_{s a}(t)$.

KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:
$\bar{\omega}(\phi)=\underset{\omega \in \Sigma}{\arg \inf } \max _{(s, a): a \neq \pi^{*}(s)} \frac{T_{1}(s, a ; \phi)+T_{2}(s, a ; \phi)}{\omega_{s a}}+\frac{T_{3}(\phi)+T_{4}(\phi)}{\min _{s} \omega_{s, \pi^{\star}(s)}}$
are easy to compute!
- Use C-Tracking [Garivier and Kaufmann, 2016]:
- Project $\bar{\omega}\left(\widehat{\phi}_{t}\right)$ on $\left\{\omega \in \Sigma: \forall(s, a), \omega_{\text {sa }} \geq \frac{1}{\sqrt{t}}\right\}$ to get $\tilde{\omega}\left(\widehat{\phi}_{t}\right)$.
- $\left(s_{t+1}, a_{t+1}\right) \in \underset{(s, a) \in \mathcal{S} \times \mathcal{A}}{\arg \max } \sum_{s=1}^{t} \tilde{\omega}_{s a}\left(\widehat{\phi}_{s}\right)-N_{s a}(t)$.
- Ensures that $\mathbb{P}_{\phi}\left(\forall(s, a) \in \mathcal{S} \times \mathcal{A}, \quad \lim _{t \rightarrow \infty} \frac{N_{s a}(t)}{t}=\bar{\omega}_{s, a}(\phi)\right)=1$.

KLB-TS: stopping rule

Figure: KL-Ball Stopping rule

KLB-TS: stopping rule

Figure: KL-Ball Stopping rule

- Need to ensure that ϕ falls within the KL-ball with probability $1-\delta$.

Algorithm: Guarantees

Theorem 3

KLB-TS has a sample complexity τ_{δ} satisfying:
for all $\delta \in(0,1), \mathbb{E}_{\phi}\left[\tau_{\delta}\right]$ is finite and $\limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\phi}\left[\tau_{\delta}\right]}{\log (1 / \delta)} \leq 4 U(\phi)$, where:

$$
\delta \rightarrow 0
$$

$$
\begin{aligned}
U(\phi) & \triangleq \sup _{\omega} U(\phi, \omega) \\
& =\mathcal{O}\left(S \max \left(\frac{\operatorname{Var}_{\max }^{\star}\left[V_{\phi}^{\star}\right]}{\Delta_{\min }^{2}(1-\gamma)^{2}}, \frac{1}{\Delta_{\min }^{2}(1-\gamma)^{3}}\right)\right. \\
& \left.+\sum_{s, a \neq \pi^{*}(s)} \frac{1+\operatorname{Var}_{p_{\phi}(s, a)}\left[V_{\phi}^{\star}\right]}{\Delta_{s, a}^{2}}\right)
\end{aligned}
$$

Experiments

Figure: Asymptotic bound: $\mathrm{S}=\mathrm{A}=2, \gamma=0.5$.

Experiments

Figure: $\mathrm{KLB}-\mathrm{TS}$ vs. BESPOKE . $\mathrm{S}=\mathrm{A}=2, \gamma=0.5$.

Experiments

Figure: KLB-TS vs. BESPOKE. $S=5, A=10, \gamma=0.7$.

- Most of BESPOKE's sample complexity comes from the burn-in phase $\Omega\left(\frac{S^{2} A \log (1 / \delta)}{(1-\gamma)^{2}}\right)$.

Conclusion

(1) Algorithms designed using problem-specific bounds can achieve better sample complexity than minimax ones.
(2) Contrary to MAB, IT lower bound is intractable for MDPs.
(3) We can derive problem-specific surrogates which:

- Are explicit, depending on functionals of the MDP.
- Have a corresponding allocation that is easy to compute.
(9) Can be used to devise (Asymptocically) Matching algorithm.
(5) First step towards understanding problem-specific ε-optimal policy identification.

Thanks!

References I

國 Agarwal，A．，Kakade，S．，and Yang，L．F．（2020）．Model－based reinforcement learning with a generative model is minimax optimal． volume 125 of Proceedings of Machine Learning Research，pages 67－83．PMLR．
围 Azar，M．G．，Munos，R．，and Kappen，H．J．（2013）．Minimax pac bounds on the sample complexity of reinforcement learning with a generative model．Machine learning，91（3）：325－349．

围 Even－Dar，E．and Mansour，Y．（2003）．Learning rates for q－learning． Journal of Machine Learning Research，5（Dec）：1－25．
Fabillon，V．，Ghavamzadeh，M．，and Lazaric，A．（2012）．Best arm identification：A unified approach to fixed budget and fixed confidence．In NIPS．

References II

Rarivier, A. and Kaufmann, E. (2016). Optimal best arm identification with fixed confidence. In Feldman, V., Rakhlin, A., and Shamir, O., editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages 998-1027, Columbia University, New York, New York, USA. PMLR.
䡒 Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P. (2012). Pac subset selection in stochastic multi-armed bandits. In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages 655-662, New York, NY, USA. ACM.
Kearns, M. and Singh, S. (1999). Finite-sample convergence rates for q-learning and indirect algorithms. Advances in Neural Information Processing, 11.

References III

(1) Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. (2020). Breaking the sample size barrier in model-based reinforcement learning with a generative model. arXiv preprint, arXiv:2005.12900.

䍰 Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. (2018).
Near-optimal time and sample complexities for solving markov decision processes with a generative model. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems 31, pages 5186-5196. Curran Associates, Inc.
R Zanette, A., Kochenderfer, M. J., and Brunskill, E. (2019). Almost horizon-free structure-aware best policy identification with a generative model. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages 5625-5634. Curran Associates, Inc.

