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Introduction



Motivation

• Pac-Man needs to learn

an optimal policy that

maximizes his long-term

reward.

• Pac-Man doesn’t have

access to a simulator.

• So Pac-Man needs to

navigate through the

unknown maze to

collect observations.
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Infinite horizon discounted MDPs

M =< S,A, pM, qM, γ >

1. S,A: Finite state and action spaces.

2. After playing action a at state s the

agent:

• receives reward R(s, a) ∼ qM(.|s, a).

• makes transition to s ′ ∼ pM(.|s, a).

• For simplicity, we assume q with

support in [0, 1] .
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Best Policy Identification

M =< S,A, pM, qM, γ >

• γ ∈ [0, 1) is the discount factor.

• Collect observations to identify a policy π : S → A maximizing the

total discounted reward:

π?M ∈ arg max
π

V π
M(s) = EM

[ ∞∑
t=0

γtR(sπt , π(sπt ))

∣∣∣∣ s0 = s

]

• We assume that: (1) π? , π?M is unique; (2) M is communicating.

• δ-PC algorithm: Return π̂?τ such that PM(π̂?τ 6= π?) ≤ δ, using

minimum number of samples!
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Learning: be specific!

Measures of optimality:

• Minimax over a class of

MDPs M:

inf
A:δ-PC

sup
M∈M

EM,A[τδ]

• Instance-specific: For

ground-truth instance M:

inf
A:δ-PC

EM,A[τδ]

• We seek algorithms that can adapt to the hardness of the instance.
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Main Results



Lower Bound: A two-player zero-sum game

• 1st Player (Algorithm) plays a sampling strategy ω ∈ Σ in the

simplex of RSA.

• 2nd Player (Nature) plays an alternative instance

M′ ∈ Alt(M) = {M′ : π? is not optimal inM′}.
• The gain of Algorithm (= loss of Nature) is:∑

s,a

ωsaKLM|M′(s, a),

Algorithm only collects observations from a single trajectory =⇒ ω is

constrained:

ω ∈ Ω(M) =

{
ω ∈ Σ : ∀s ∈ S,

∑
a

ωsa =
∑
s′,a′

pM(s|s ′, a′)ωs′a′

}
.

Value of the game:

To(M)−1 = sup
ω∈Ω(M)

inf
M′∈Alt(M)

∑
s,a

ωsaKLM|M′(s, a).
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Lower Bound: A two-player zero-sum game

Proposition 1

The sample complexity of any δ-PC algorithm satisfies: for any M with a

unique optimal policy,

lim inf
δ→0

EM,A[τ ]

log(1/δ)
≥ To(M),

where To(M)−1 = sup
ω∈Ω(M)

inf
M′∈Alt(M)

∑
s,a

ωsaKLM|M′(s, a). (1)

where:

• Alt(M) = {M′ : π? is not optimal inM′} = alternative MDPs.

• Ω(M) =
{
ω ∈ Σ : ∀s ∈ S,

∑
a ωsa =

∑
s′,a′

pM(s|s ′, a′)ωs′a′
}

the set

of navigation-constrained allocations.

• KLM|ψ(s, a) = KL(qM(s, a), qψ(s, a)) + KL(pM(s, a), pψ(s, a))
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Upper Bound

We propose an algorithm, MDP-Navigate-and-Stop (MDP-NaS).

Theorem 1

MDP-NaS is δ-Probably Correct. If the algorithm has access to an

optimization oracle that solves the minimization sub-problem of the LB, then

E[τδ] = O(To(M)) log(1/δ).

Otherwise, it’s sample complexity is bounded by:

O
(

inf
ω∈Ω(M)

max
(s,a):a 6=π?(s)

1 + Varp(s,a)[V
?
M]

ωsa∆2
sa

+
1

min
s
ωs,π?(s)∆

2
min(1− γ)3

)
log(1/δ)

• ∆sa = V ?
M(s)− Q?

M(s, a): sub-optimality gap.

• ∆min = mins,a 6=π?(s) ∆sa: minimum gap.

• Varp(s,a)[V
?
M] = Vs′∼pM(.|s,a)[V

?
M(s ′)]: variance of next-state value

function.
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Take-away message

1. Instance specific Lower Bound: Two-player game, similar to the case

of generative model but with a restricted strategy set for the

algorithm.

2. First Algorithm with problem-specific guarantees in the online

setting !

3. Algorithm can be instance-optimal given an optimization oracle that

solves the best response problem.
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Novelties in Algorithm design



Recipe for instance-optimality in Pure Exploration

• Suppose we know how to compute the optimal allocation vector

ω?(M) = arg max
ω∈Ω(M)

inf
M′∈Alt(M)

∑
s,a

ωsaKLM|M′(s, a).

• All we need is a sampling rule which ensures that for all (s, a):

Nsa(t)/t −→
t→∞

ω?sa(M).

• Multi-armed bandits and MDPs with a generative model (simulator):

1. Forced exploration: sample (st+1, at+1) from {(s, a) : Nsa(t) ≤
√
t}

if not empty. Ensures consistency of ω?(M̂t)!

2. Tracking: Otherwise sample

(st+1, at+1) ∈ arg mins,a Nsa(t)/t − ω?
sa(M̂t). Ensures efficient

sampling strategy on the long run.
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D-Navigation: A novel sampling rule

• We can’t choose the next state the online setting ! =⇒ Tracking is

no longer applicable.

• Define oracle policy:

∀(s, a) ∈ S ×A, πo(M)(a|s) ,
ω?sa(M)∑

b∈A ω
?
sb(M)

.

ω? is the stationary distribution of the Markov Chain Pπo .

• Play at ∼ πt(.|st) where:
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ω? is the stationary distribution of the Markov Chain Pπo .

• Play at ∼ πt(.|st) where:

πt = εtπu + (1− εt)πo(M̂t).

εt is an exploration parameter that needs careful tuning (check the

paper !)
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D-Navigation: Why does it work ?

• (s0, a0, . . . , st , at , . . .) = (st , at)t≥0 is the realization of

Non-homogeneous (and history dependent !) Markov Chain with

values in S ×A with kernels (Pπt )t≥1.

• Denote by (ωt)t≥1 the stationary distributions.

• Using forced exploration: πt −→
t→∞

πo(M) a.s, hence

ωt −→
t→∞

ω?(M).

• Nsa(t)/t −→
t→∞

ω?sa(M) is the result of an ergodic theorem.
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D-Navigation: Why does it work ?

Theorem 2 (Propositions 12, 8 in the paper)

Denote by Pt the kernel of πt and by ωt its stationary distribution. Assume

that:

• There exists two constants Ct and ρt such that for all n ≥ 1:

‖Pn
t −Wt‖∞ ≤ Ctρ

n
t

where Wt is a rank-one matrix whose rows are equal to ωT
t .

• UNIFORM SPEED: Define Lt = Ct(1− ρt)−1. Then lim sup
t→∞

Lt <∞ a.s.

• STABILITY: TV(Pt+1,Pt) −→
t→∞

0 a.s.

Then for all (s, a):

Nsa(t)/t −→
t→∞

ω?sa.
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Conclusion



Conclusion

1. First Algorithm with problem-specific sample complexity in the

online setting !

2. Algorithm can be instance-optimal given an optimization oracle.

3. Although tracking is not possible, achieving some target oracle

allocation is still possible through adaptive control of the trajectory,

and a powerful ergodic theorem !

4. First step towards understanding problem-specific ε-optimal policy

identification.
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Thanks !
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