

Navigating to the Best Policy in Markov Decision Processes

Aymen Al Marjani¹, Aurélien Garivier¹, Alexandre Proutiere² October 18, 2021

¹ENS de Lyon

²KTH Royal Institute of Technology

Introduction

Main Results

Novelties in Algorithm design

Conclusion

Introduction

Motivation

- Pac-Man needs to learn an optimal policy that maximizes his long-term reward.
- Pac-Man doesn't have access to a simulator.
- So Pac-Man needs to navigate through the unknown maze to collect observations.

1. \mathcal{S}, \mathcal{A} : Finite state and action spaces.

 $\mathcal{M} = < \mathcal{S}, \mathcal{A}, p_{\mathcal{M}}, q_{\mathcal{M}}, \gamma >$

Infinite horizon discounted MDPs

1.
$$\mathcal{S}, \mathcal{A}$$
: **Finite** state and action spaces.

2. After playing action *a* at state *s* the agent:

• receives reward
$$R(s, a) \sim q_{\mathcal{M}}(.|s, a)$$
.

• makes transition to $s' \sim p_{\mathcal{M}}(.|s,a)$.

$$\mathcal{M} = < \mathcal{S}, \mathcal{A}, p_{\mathcal{M}}, q_{\mathcal{M}}, \gamma >$$

Infinite horizon discounted MDPs

$$\mathcal{M} = < \mathcal{S}, \mathcal{A}, \mathcal{p}_{\mathcal{M}}, \mathcal{q}_{\mathcal{M}}, \gamma >$$

- 1. S, A: Finite state and action spaces.
- 2. After playing action *a* at state *s* the agent:
 - receives reward $R(s, a) \sim q_{\mathcal{M}}(.|s, a)$.
 - makes transition to $s' \sim p_{\mathcal{M}}(.|s,a)$.
 - For simplicity, we assume q with support in [0, 1].

Best Policy Identification

$$\mathcal{M} = < \mathcal{S}, \mathcal{A}, p_{\mathcal{M}}, q_{\mathcal{M}}, \gamma >$$

• $\gamma \in [0,1)$ is the discount factor.

 $\mathcal{M} = < \mathcal{S}, \mathcal{A}, p_{\mathcal{M}}, q_{\mathcal{M}}, \gamma >$

- $\gamma \in [0,1)$ is the discount factor.
- Collect observations to identify a policy $\pi : S \to A$ maximizing the total discounted reward:

$$\pi^{\star}_{\mathcal{M}} \in rg\max_{\pi} \left. V^{\pi}_{\mathcal{M}}(s) = \mathbb{E}_{\mathcal{M}} \bigg[\left. \sum_{t=0}^{\infty} \gamma^{t} R(s^{\pi}_{t}, \pi(s^{\pi}_{t}))
ight| \, s_{0} = s \bigg]$$

 $\mathcal{M} = < \mathcal{S}, \mathcal{A}, p_{\mathcal{M}}, q_{\mathcal{M}}, \gamma >$

- $\gamma \in [0,1)$ is the discount factor.
- Collect observations to identify a policy $\pi : S \to A$ maximizing the total discounted reward:

$$\pi^{\star}_{\mathcal{M}} \in rg\max_{\pi} \left. V^{\pi}_{\mathcal{M}}(s) = \mathbb{E}_{\mathcal{M}} \bigg[\sum_{t=0}^{\infty} \gamma^{t} R(s^{\pi}_{t}, \pi(s^{\pi}_{t})) \bigg| \ s_{0} = s \bigg]$$

• We assume that: (1) $\pi^* \triangleq \pi^*_{\mathcal{M}}$ is unique; (2) \mathcal{M} is communicating.

 $\mathcal{M} = < \mathcal{S}, \mathcal{A}, p_{\mathcal{M}}, q_{\mathcal{M}}, \gamma >$

- $\gamma \in [0,1)$ is the discount factor.
- Collect observations to identify a policy $\pi : S \to A$ maximizing the total discounted reward:

$$\pi^{\star}_{\mathcal{M}} \in \operatorname*{arg\,max}_{\pi} \, V^{\pi}_{\mathcal{M}}(s) = \mathbb{E}_{\mathcal{M}} \bigg[\sum_{t=0}^{\infty} \gamma^{t} R(s^{\pi}_{t}, \pi(s^{\pi}_{t})) \bigg| \, s_{0} = s \bigg]$$

- We assume that: (1) $\pi^* \triangleq \pi^*_{\mathcal{M}}$ is unique; (2) \mathcal{M} is communicating.
- δ-PC algorithm: Return π^{*}_τ such that P_M(π^{*}_τ ≠ π^{*}) ≤ δ, using minimum number of samples!

Learning: be specific!

Measures of optimality:

 Minimax over a class of MDPs M:

 $\inf_{\mathbb{A}:\delta\text{-PC}} \sup_{\mathcal{M}\in\mathbb{M}} \mathbb{E}_{\mathcal{M},\mathbb{A}}[\tau_{\delta}]$

• Instance-specific: For ground-truth instance \mathcal{M} :

$$\inf_{\mathbb{A}:\delta\text{-PC}} \mathbb{E}_{\mathcal{M},\mathbb{A}}[\tau_{\delta}]$$

Learning: be specific!

Measures of optimality:

 Minimax over a class of MDPs M:

 $\inf_{\mathbb{A}:\delta\text{-PC}} \sup_{\mathcal{M}\in\mathbb{M}} \mathbb{E}_{\mathcal{M},\mathbb{A}}[\tau_{\delta}]$

• Instance-specific: For ground-truth instance \mathcal{M} :

 $\inf_{\mathbb{A}:\delta-\mathrm{PC}} \mathbb{E}_{\mathcal{M},\mathbb{A}}[\tau_{\delta}]$

• We seek algorithms that can adapt to the hardness of the instance.

Main Results

 1st Player (Algorithm) plays a sampling strategy ω ∈ Σ in the simplex of ℝ^{SA}.

- 1st Player (Algorithm) plays a sampling strategy ω ∈ Σ in the simplex of ℝ^{SA}.
- 2nd Player (Nature) plays an alternative instance
 M' ∈ Alt(M) = {M' : π* is not optimal in M'}.

- 1st Player (Algorithm) plays a sampling strategy ω ∈ Σ in the simplex of ℝ^{SA}.
- 2nd Player (Nature) plays an alternative instance
 M' ∈ Alt(M) = {M' : π* is not optimal in M'}.
- The gain of Algorithm (= loss of Nature) is:

$$\sum_{s,a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s,a),$$

where $\operatorname{KL}_{\mathcal{M}|\psi}(s,a) = \operatorname{KL}(q_{\mathcal{M}}(s,a), q_{\psi}(s,a)) + \operatorname{KL}(p_{\mathcal{M}}(s,a), p_{\psi}(s,a)).$

- 1st Player (Algorithm) plays a sampling strategy ω ∈ Σ in the simplex of ℝ^{SA}.
- 2nd Player (Nature) plays an alternative instance
 M' ∈ Alt(M) = {M' : π^{*} is not optimal in M'}.
- The gain of Algorithm (= loss of Nature) is:

$$\sum_{s,a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s,a),$$

Algorithm only collects observations from a single trajectory $\implies \omega$ is constrained:

$$\omega \in \Omega(\mathcal{M}) = \left\{ \omega \in \Sigma : \forall s \in \mathcal{S}, \sum_{a} \omega_{sa} = \sum_{s',a'} p_{\mathcal{M}}(s|s',a') \omega_{s'a'} \right\}.$$

- 1st Player (Algorithm) plays a sampling strategy ω ∈ Σ in the simplex of ℝ^{SA}.
- 2nd Player (Nature) plays an alternative instance
 M' ∈ Alt(M) = {M' : π* is not optimal in M'}.
- The gain of Algorithm (= loss of Nature) is:

$$\sum_{s,a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s,a),$$

Algorithm only collects observations from a single trajectory $\implies \omega$ is constrained:

$$\omega \in \Omega(\mathcal{M}) = \left\{ \omega \in \Sigma : \forall s \in \mathcal{S}, \sum_{a} \omega_{sa} = \sum_{s',a'} p_{\mathcal{M}}(s|s',a') \omega_{s'a'} \right\}.$$

Value of the game:

$$T_o(\mathcal{M})^{-1} = \sup_{\omega \in \Omega(\mathcal{M})} \inf_{\mathcal{M}' \in \mathsf{Alt}(\mathcal{M})} \sum_{s,a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s,a).$$

Proposition 1

The sample complexity of any δ -PC algorithm satisfies: for any \mathcal{M} with a unique optimal policy,

$$\begin{split} \liminf_{\delta \to 0} & \frac{\mathbb{E}_{\mathcal{M},\mathbb{A}}[\tau]}{\log(1/\delta)} \geq T_o(\mathcal{M}), \\ \text{where } & T_o(\mathcal{M})^{-1} = \sup_{\omega \in \Omega(\mathcal{M})} & \inf_{\mathcal{M}' \in \mathsf{Alt}(\mathcal{M})} \sum_{s,a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s,a). \end{split}$$
(1)

where:

- Alt $(\mathcal{M}) = \{\mathcal{M}' : \pi^* \text{ is not optimal in } \mathcal{M}'\} = \text{alternative MDPs.}$
- Ω(M) = {ω ∈ Σ : ∀s ∈ S, ∑_a ω_{sa} = ∑_{s',a'} p_M(s|s', a')ω_{s'a'}} the set of navigation-constrained allocations.
- $\operatorname{KL}_{\mathcal{M}|\psi}(s,a) = \operatorname{KL}(q_{\mathcal{M}}(s,a), q_{\psi}(s,a)) + \operatorname{KL}(p_{\mathcal{M}}(s,a), p_{\psi}(s,a))$

Upper Bound

We propose an algorithm, MDP-Navigate-and-Stop (MDP-NaS).

Theorem 1

MDP-NaS is δ -Probably Correct. If the algorithm has access to an optimization oracle that solves the minimization sub-problem of the LB, then

 $\mathbb{E}[\tau_{\delta}] = \mathcal{O}(\mathcal{T}_{o}(\mathcal{M})) \log(1/\delta).$

Upper Bound

We propose an algorithm, MDP-Navigate-and-Stop (MDP-NaS).

Theorem 1

MDP-NaS is δ -Probably Correct. If the algorithm has access to an optimization oracle that solves the minimization sub-problem of the LB, then

$$\mathbb{E}[\tau_{\delta}] = \mathcal{O}(T_o(\mathcal{M})) \log(1/\delta).$$

Otherwise, it's sample complexity is bounded by:

$$\mathcal{O}\left(\inf_{\omega\in\Omega(\mathcal{M})}\max_{(s,a):a\neq\pi^{\star}(s)}\frac{1+\operatorname{Var}_{p(s,a)}[V_{\mathcal{M}}^{\star}]}{\omega_{sa}\Delta_{sa}^{2}}+\frac{1}{\min_{s}\omega_{s,\pi^{\star}(s)}\Delta_{\min}^{2}(1-\gamma)^{3}}\right)\log(1/\delta)$$

- $\Delta_{sa} = V^{\star}_{\mathcal{M}}(s) Q^{\star}_{\mathcal{M}}(s,a)$: sub-optimality gap.
- $\Delta_{\min} = \min_{s,a \neq \pi^{\star}(s)} \Delta_{sa}$: minimum gap.
- Var_{p(s,a)}[V^{*}_M] = V_{s'∼p_M(.|s,a)}[V^{*}_M(s')]: variance of next-state value function.

- 1. Instance specific Lower Bound: Two-player game, similar to the case of generative model but with a restricted strategy set for the algorithm.
- 2. First Algorithm with problem-specific guarantees in the online setting !
- 3. Algorithm can be instance-optimal given an optimization oracle that solves the best response problem.

Novelties in Algorithm design

• Suppose we know how to compute the optimal allocation vector

$$\omega^{\star}(\mathcal{M}) = \arg \max_{\omega \in \Omega(\mathcal{M})} \inf_{\mathcal{M}' \in \mathsf{Alt}(\mathcal{M})} \sum_{s,a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s,a).$$

• Suppose we know how to compute the optimal allocation vector

$$\omega^{\star}(\mathcal{M}) = \arg \max_{\omega \in \Omega(\mathcal{M})} \inf_{\mathcal{M}' \in \mathsf{Alt}(\mathcal{M})} \sum_{s,a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s,a).$$

• All we need is a sampling rule which ensures that for all (s, a):

$$N_{sa}(t)/t \mathop{\longrightarrow}\limits_{t
ightarrow\infty} \omega^{\star}_{sa}(\mathcal{M}).$$

• Suppose we know how to compute the optimal allocation vector

$$\omega^{\star}(\mathcal{M}) = \arg \max_{\omega \in \Omega(\mathcal{M})} \inf_{\mathcal{M}' \in \mathsf{Alt}(\mathcal{M})} \sum_{s, a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s, a).$$

• All we need is a sampling rule which ensures that for all (s, a):

$$N_{ extsf{sa}}(t)/t \mathop{\longrightarrow}\limits_{t
ightarrow\infty} \omega^{\star}_{ extsf{sa}}(\mathcal{M}).$$

- Multi-armed bandits and MDPs with a generative model (simulator):
 - 1. Forced exploration: sample (s_{t+1}, a_{t+1}) from $\{(s, a) : N_{sa}(t) \le \sqrt{t}\}$ if not empty.

• Suppose we know how to compute the optimal allocation vector

$$\omega^{\star}(\mathcal{M}) = \arg \max_{\omega \in \Omega(\mathcal{M})} \inf_{\mathcal{M}' \in \mathsf{Alt}(\mathcal{M})} \sum_{s, a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s, a).$$

• All we need is a sampling rule which ensures that for all (s, a):

$$N_{sa}(t)/t \mathop{\longrightarrow}\limits_{t
ightarrow\infty} \omega^{\star}_{sa}(\mathcal{M}).$$

- Multi-armed bandits and MDPs with a generative model (simulator):
 - 1. Forced exploration: sample (s_{t+1}, a_{t+1}) from $\{(s, a) : N_{sa}(t) \le \sqrt{t}\}$ if not empty.
 - 2. Tracking: Otherwise sample

 $(s_{t+1}, a_{t+1}) \in \operatorname{arg\,min}_{s,a} N_{sa}(t)/t - \omega_{sa}^{\star}(\widehat{\mathcal{M}}_t).$

• Suppose we know how to compute the optimal allocation vector

$$\omega^{\star}(\mathcal{M}) = \arg \max_{\omega \in \Omega(\mathcal{M})} \inf_{\mathcal{M}' \in \mathsf{Alt}(\mathcal{M})} \sum_{s, a} \omega_{sa} \mathrm{KL}_{\mathcal{M}|\mathcal{M}'}(s, a).$$

• All we need is a sampling rule which ensures that for all (s, a):

$$N_{{ extsf{sa}}}(t)/t \mathop{\longrightarrow}\limits_{t
ightarrow\infty} \omega^{\star}_{{ extsf{sa}}}(\mathcal{M}).$$

- Multi-armed bandits and MDPs with a generative model (simulator):
 - 1. Forced exploration: sample (s_{t+1}, a_{t+1}) from $\{(s, a) : N_{sa}(t) \le \sqrt{t}\}$ if not empty. Ensures consistency of $\omega^*(\widehat{\mathcal{M}}_t)!$
 - 2. Tracking: Otherwise sample $(s_{t+1}, a_{t+1}) \in \arg\min_{s,a} N_{sa}(t)/t - \omega_{sa}^{\star}(\widehat{\mathcal{M}}_t)$. Ensures efficient sampling strategy on the long run.

• We can't choose the next state the online setting ! \implies Tracking is no longer applicable.

- We can't choose the next state the online setting ! ⇒ Tracking is no longer applicable.
- Define oracle policy:

$$\forall (s, a) \in \mathcal{S} \times \mathcal{A}, \quad \pi^{\circ}(\mathcal{M})(a|s) \triangleq \frac{\omega_{sa}^{\star}(\mathcal{M})}{\sum_{b \in \mathcal{A}} \omega_{sb}^{\star}(\mathcal{M})}.$$

 ω^{\star} is the stationary distribution of the Markov Chain $P_{\pi^{\circ}}$.

- We can't choose the next state the online setting ! \implies Tracking is no longer applicable.
- Define oracle policy:

$$\forall (s,a) \in \mathcal{S} imes \mathcal{A}, \quad \pi^{o}(\mathcal{M})(a|s) \triangleq rac{\omega_{sa}^{\star}(\mathcal{M})}{\sum_{b \in \mathcal{A}} \omega_{sb}^{\star}(\mathcal{M})}.$$

 ω^{\star} is the stationary distribution of the Markov Chain $P_{\pi^{\circ}}$.

• Play $a_t \sim \pi_t(.|s_t)$ where:

$$\pi_t = \varepsilon_t \pi_u + (1 - \varepsilon_t) \pi^o(\widehat{\mathcal{M}}_t).$$

- We can't choose the next state the online setting ! ⇒ Tracking is no longer applicable.
- Define oracle policy:

$$\forall (s,a) \in \mathcal{S} \times \mathcal{A}, \quad \pi^{o}(\mathcal{M})(a|s) \triangleq \frac{\omega_{sa}^{\star}(\mathcal{M})}{\sum_{b \in \mathcal{A}} \omega_{sb}^{\star}(\mathcal{M})}.$$

 ω^{\star} is the stationary distribution of the Markov Chain $P_{\pi^{o}}$.

• Play $a_t \sim \pi_t(.|s_t)$ where:

$$\pi_t = \varepsilon_t \pi_{\boldsymbol{u}} + (1 - \varepsilon_t) \pi^{\boldsymbol{o}}(\widehat{\mathcal{M}}_t)$$

 $(\pi_u \text{ is the uniform policy})$

- We can't choose the next state the online setting ! ⇒ Tracking is no longer applicable.
- Define oracle policy:

$$\forall (s,a) \in \mathcal{S} \times \mathcal{A}, \quad \pi^{o}(\mathcal{M})(a|s) \triangleq \frac{\omega_{sa}^{\star}(\mathcal{M})}{\sum_{b \in \mathcal{A}} \omega_{sb}^{\star}(\mathcal{M})}.$$

 ω^{\star} is the stationary distribution of the Markov Chain $P_{\pi^{\circ}}$.

• Play $a_t \sim \pi_t(.|s_t)$ where:

$$\pi_t = \varepsilon_t \pi_u + (1 - \varepsilon_t) \pi^o(\widehat{\mathcal{M}}_t).$$

 ε_t is an exploration parameter that needs careful tuning (check the paper !)

- (s₀, a₀, ..., s_t, a_t, ...) = (s_t, a_t)_{t≥0} is the realization of Non-homogeneous (and history dependent !) Markov Chain with values in S × A with kernels (P_{πt})_{t≥1}.
- Denote by $(\omega_t)_{t\geq 1}$ the stationary distributions.
- Using forced exploration: $\pi_t \underset{t \to \infty}{\longrightarrow} \pi^o(\mathcal{M})$ a.s, hence

$$\omega_t \xrightarrow[t \to \infty]{} \omega^*(\mathcal{M}).$$

• $N_{sa}(t)/t \xrightarrow[t \to \infty]{} \omega^{\star}_{sa}(\mathcal{M})$ is the result of an ergodic theorem.

Theorem 2 (Propositions 12, 8 in the paper)

Denote by P_t the kernel of π_t and by ω_t its stationary distribution. Assume that:

• There exists two constants C_t and ρ_t such that for all $n \ge 1$:

$$\left\|P_t^n - W_t\right\|_{\infty} \le C_t \rho_t^n$$

where W_t is a rank-one matrix whose rows are equal to ω_t^{T} .

- UNIFORM SPEED: Define $L_t = C_t (1 \rho_t)^{-1}$. Then $\limsup_{t \to \infty} L_t < \infty$ a.s.
- STABILITY: $TV(P_{t+1}, P_t) \xrightarrow[t \to \infty]{} 0$ a.s.

Then for all (s, a):

$$N_{sa}(t)/t extstyle \omega_{sa}^{\star}.$$

Conclusion

- 1. First Algorithm with problem-specific sample complexity in the online setting !
- 2. Algorithm can be instance-optimal given an optimization oracle.
- 3. Although tracking is not possible, achieving some target oracle allocation is still possible through adaptive control of the trajectory, and a powerful ergodic theorem !
- 4. First step towards understanding problem-specific ε -optimal policy identification.

Thanks !