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Introduction



e Pac-Man needs to learn

an optimal policy that
maximizes his long-term
reward.

Pac-Man doesn’t have

GeT ReApy!

access to a simulator.

So Pac-Man needs to
navigate through the
unknown maze to

collect observations. SeoRe © Lives 99
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Infinite horizon discounted MDPs

1. S, A: Finite state and action spaces.
2. After playing action a at state s the
agent:
M =<S, A pm, Gm, v > e receives reward R(s,a) ~ qa(.]s, a).
e makes transition to s’ ~ pa(.]s, a).
e For simplicity, we assume g with
support in [0,1] .

State, Reward Action
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Best Policy Identification

M =<8, A pm,qm, v >

v €[0,1) is the discount factor.

Collect observations to identify a policy 7 : § — A maximizing the
total discounted reward:
So = S:|

e We assume that: (1) 7* £ 7%, is unique; (2) M is communicating.

ﬂMeargmax Viu(s EM[ZV (st,m(st))

J-PC algorithm: Return 77 such that P (75 # 7*) < 4, using
minimum number of samples!



Measures of optimality:

e Minimax over a class of minimax
MDPs M: Sample Complexit: v/.

instance-specific

inf  sup E T
A:6-PC ME?MI M’A[ 5]

e Instance-specific: For

Hardness of

ground-truth instance M:
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Learning: be specific!

Measures of optimality:

e Minimax over a class of
MDPs M: Sample Complexit

inf  sup E T
A:6-PC ME?MI M’A[ 5]

e Instance-specific: For
ground-truth instance M:

ainf o Eralre]

/— minimax

¥

instance-specific

Hardness of

e We seek algorithms that can adapt to the hardness of the instance.



Main Results
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Lower Bound: A two-player zero-sum game

e 1st Player (Algorithm) plays a sampling strategy w € X in the
simplex of R%A.
e 2nd Player (Nature) plays an alternative instance
M e Alt (M) = {M’: 7* is not optimal in M’}.
e The gain of Algorithm (= loss of Nature) is:
ZwsaKL/\/W\,y(s7 a),
s.a
Algorithm only collects observations from a single trajectory = w is
constrained:
we QM) = {w EY: VseS, Zwsa = ZpM(s|s’,a')w5/a/}.
a s’,a’

Value of the game:

T -1 fr— s f KL ) .
e wesg(F/)\A) M’eIRIt(M);wsa mime (s, a)



Lower Bound: A two-player zero-sum game

The sample complexity of any §-PC algorithm satisfies: for any M with a

unique optimal policy,

. . EM’A[’T]
I|5nJQf W > To(M),

here To(M) ™" = saKL 1
where T,(M) wesslzj&) w eAIt(M Zw Mmime (s, a). (

~—

where:
o Alt(M) ={M’: 7* is not optimal in M’} = alternative MDPs.
e QM)={weX: VseS, Y, we= Y pm(sls’,a)wsa} the set
of navigation-constrained allocations. o
o KLujy(s,a) = KL(qum(s, a), qu(s, a)) + KL(prm(s, a), pu(s, a))



Upper Bound

We propose an algorithm, MDP-Navigate-and-Stop (MDP-NaS).

MDP-NaS is d-Probably Correct. If the algorithm has access to an
optimization oracle that solves the minimization sub-problem of the LB, then

E[75] = O(To(M)) log(1/9).



Upper Bound

We propose an algorithm, MDP-Navigate-and-Stop (MDP-NaS).

MDP-NaS is d-Probably Correct. If the algorithm has access to an
optimization oracle that solves the minimization sub-problem of the LB, then

E[75] = O(To(M)) log(1/9).

Otherwise, it's sample complexity is bounded by:

. 1+ Var (s 3)[\//)(/1] 1 )
(@ inf max P + — log(1/6
(UJEQ(M) (s,a):a#m*(s) wsaAga mslnws’,r*(s)Arznin(l — ’}/)3 g( / )

o Ay, = Vi (s) — Qr(s, a): sub-optimality gap.

o Amin = mins,#ﬂ*(s) Agy: minimum gap.

o Var,s o) [Vi] = Vepr(ls,a)[Vig(s')]: variance of next-state value
function.



Take-away message

1. Instance specific Lower Bound: Two-player game, similar to the case
of generative model but with a restricted strategy set for the
algorithm.

2. First Algorithm with problem-specific guarantees in the online
setting !

3. Algorithm can be instance-optimal given an optimization oracle that
solves the best response problem.

10



Novelties in Algorithm design




Recipe for instance-optimality in Pure Exploration

e Suppose we know how to compute the optimal allocation vector

w* (M) = arg max inf we, KL (s, a).
(M) VS M’EAIt(M)SZQ: M (5, 3)
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e Multi-armed bandits and MDPs with a generative model (simulator):

1. Forced exploration: sample (st+1,ar+1) from {(s,a) : Ne(t) < /t}
if not empty.

2. Tracking: Otherwise sample
(5t11,ar41) € argmin, , Nea(t)/t — w;*a(ﬂt).
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Recipe for instance-optimality in Pure Exploration

e Suppose we know how to compute the optimal allocation vector

w (M) =argmax  inf wsaKL pq a0 (8, ).
( ) weQ(M) M’ eAI(M ); ! ( )

e All we need is a sampling rule which ensures that for all (s, a):

No(0)/t = wi(M).

e Multi-armed bandits and MDPs with a generative model (simulator):

1. Forced exploration: sample (st+1,ar+1) from {(s,a) : Ne(t) < /t}
if not empty. Ensures consistency of w*(/\//ﬂ)!

2. Tracking: Otherwise sample
(st+1,arr1) € argming , Neo(t)/t — w(M_). Ensures efficient

sampling strategy on the long run.

11



D-Navigation: A novel sampling rule

e We can't choose the next state the online setting ! = Tracking is
no longer applicable.
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D-Navigation: A novel sampling rule

e We can't choose the next state the online setting | == Tracking is
no longer applicable.

e Define oracle policy:

wgp(M)
P beaWip (M)

is the stationary distribution of the Markov Chain P,..

V(s,a) €S x A, 7°(M)(als) 2

w*
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D-Navigation: A novel sampling rule

e We can't choose the next state the online setting ! = Tracking is
no longer applicable.

e Define oracle policy:

W(s,a) €S x A, mo(M)(als) £ %

is the stationary distribution of the Markov Chain P,..

w*

e Play a; ~ m¢(.|s) where:
me = ey + (1 — €t)7TO(.K/l\t)

(my is the uniform policy)
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D-Navigation: A novel sampling rule

e We can't choose the next state the online setting ! = Tracking is
no longer applicable.

e Define oracle policy:

wgp(M)
P bea Wi (M)

w* is the stationary distribution of the Markov Chain Pjo.

V(s,a) € S x A, 7w°(M)(als) =

e Play a; ~ m(.|st) where:
T = E¢Ty + (1 — 515)7'('0(./(/1\1»).
€¢ is an exploration parameter that needs careful tuning (check the
paper !)
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D-Navigation: Why does it work ?

(S0,@0,---,5¢a¢,...) = (St, ar)e>0 is the realization of
Non-homogeneous (and history dependent !) Markov Chain with
values in S x A with kernels (Py,)¢>1.

e Denote by (w;)¢>1 the stationary distributions.
e Using forced exploration: " (M) a.s, hence
—r 00
wr — w*(M).
t—00
o Nsy(t)/t — wk,(M) is the result of an ergodic theorem.

t—o00

13



D-Navigation: Why does it work ?

Theorem 2 (Propositions 12, 8 in the paper)

Denote by P; the kernel of m; and by w; its stationary distribution. Assume
that:

e There exists two constants C; and p; such that for all n > 1:
[P — Wl < Cept

where W; is a rank-one matrix whose rows are equal to wy.

e UNIFORM SPEED: Define L; = C;(1 — p;)~!. Then limsupL; < co a.s.

t—o0

e STABILITY: TV(P¢i1, Pt) =2 0 as.

Then for all (s, a):
Nsa(t)/t = we,.

14
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Conclusion

1. First Algorithm with problem-specific sample complexity in the
online setting !

2. Algorithm can be instance-optimal given an optimization oracle.

3. Although tracking is not possible, achieving some target oracle
allocation is still possible through adaptive control of the trajectory,
and a powerful ergodic theorem !

4. First step towards understanding problem-specific e-optimal policy
identification.

15



Thanks !
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