28 :?.é;.\‘"
},‘ NEURAL INFORMATION
5 , PROCESSING SYSTEMS
NG
) ;o

Navigating to the Best Policy in Markov
Decision Processes

Aymen Al Marjani', Aurélien Garivier', Alexandre Proutiere?

October 18, 2021
LENS de Lyon

2KTH Royal Institute of Technology

Introduction
Main Results
Novelties in Algorithm design

Conclusion

Introduction

e Pac-Man needs to learn

an optimal policy that
maximizes his long-term
reward.

Pac-Man doesn’t have

GeT ReApy!

access to a simulator.

So Pac-Man needs to
navigate through the
unknown maze to

collect observations. SeoRe © Lives 99

Infinite horizon discounted MDPs

1. S, A: Finite state and action spaces.

M=<S, A pm,qm, v >

Infinite horizon discounted MDPs

1. S, A: Finite state and action spaces.

2. After playing action a at state s the
agent:
M =<S, A pm, Gm, v > e receives reward R(s,a) ~ qa(.]s, a).

e makes transition to s’ ~ pa(.]s, a).

State, Reward Action

Infinite horizon discounted MDPs

1. S, A: Finite state and action spaces.
2. After playing action a at state s the
agent:
M =<S, A pm, Gm, v > e receives reward R(s,a) ~ qa(.]s, a).
e makes transition to s’ ~ pa(.]s, a).
e For simplicity, we assume g with
support in [0,1] .

State, Reward Action

Best Policy Identification

M =<8, A pm,qm, v >

e v €0,1) is the discount factor.

Best Policy Identification

M =<8, A pm,qm, v >

e v €0,1) is the discount factor.

e Collect observations to identify a policy 7 : S — A maximizing the

SOZS:|

total discounted reward:

ﬂMeargmax V(s]EM[ZW (sf,m(sf))

Best Policy Identification

M =<8, A pm,qm, v >

e v €0,1) is the discount factor.

e Collect observations to identify a policy 7 : S — A maximizing the

SOZS:|

e We assume that: (1) 7* £ 7%, is unique; (2) M is communicating.

total discounted reward:

ﬂMeargmax Viu(s EM[ZV (st,m(st))

Best Policy Identification

M =<8, A pm,qm, v >

v €[0,1) is the discount factor.

Collect observations to identify a policy 7 : § — A maximizing the
total discounted reward:
So = S:|

e We assume that: (1) 7* £ 7%, is unique; (2) M is communicating.

ﬂMeargmax Viu(s EM[ZV (st,m(st))

J-PC algorithm: Return 77 such that P (75 # 7*) < 4, using
minimum number of samples!

Measures of optimality:

e Minimax over a class of minimax
MDPs M: Sample Complexit: v/.

instance-specific

inf sup E T
A:6-PC ME?MI M’A[5]

e Instance-specific: For

Hardness of

ground-truth instance M:

ainf o Eralre]

Learning: be specific!

Measures of optimality:

e Minimax over a class of
MDPs M: Sample Complexit

inf sup E T
A:6-PC ME?MI M’A[5]

e Instance-specific: For
ground-truth instance M:

ainf o Eralre]

/— minimax

¥

instance-specific

Hardness of

e We seek algorithms that can adapt to the hardness of the instance.

Main Results

Lower Bound: A two-player zero-sum game

e 1st Player (Algorithm) plays a sampling strategy w € X in the
simplex of R%A.

Lower Bound: A two-player zero-sum game

e 1st Player (Algorithm) plays a sampling strategy w € X in the
simplex of R%A.
e 2nd Player (Nature) plays an alternative instance

M e Alt (M) = {M’: 7* is not optimal in M’}.

Lower Bound: A two-player zero-sum game

e 1st Player (Algorithm) plays a sampling strategy w € X in the
simplex of RA.
e 2nd Player (Nature) plays an alternative instance
M e Alt (M) = {M’: 7* is not optimal in M’}.
e The gain of Algorithm (= loss of Nature) is:
ZcusaKL/\,WW(s7 a),

where KLle(S7 a) = KL(qM(sa a)a qil)(sﬂ a)) + KL(pM(57 a)» P¢(57 a))

Lower Bound: A two-player zero-sum game

e 1st Player (Algorithm) plays a sampling strategy w € X in the
simplex of R%A.
e 2nd Player (Nature) plays an alternative instance
M e Alt (M) = {M’: 7* is not optimal in M’}.
e The gain of Algorithm (= loss of Nature) is:
ZwsaKL/\/W\,y(s7 a),
s.a
Algorithm only collects observations from a single trajectory = w is
constrained:

we QM) = {w €x: VseS, Zwsa = ZpM(s|s’,a’)ws/a,}.

s’,a’

Lower Bound: A two-player zero-sum game

e 1st Player (Algorithm) plays a sampling strategy w € X in the
simplex of R%A.
e 2nd Player (Nature) plays an alternative instance
M e Alt (M) = {M’: 7* is not optimal in M’}.
e The gain of Algorithm (= loss of Nature) is:
ZwsaKL/\/W\,y(s7 a),
s.a
Algorithm only collects observations from a single trajectory = w is
constrained:
we QM) = {w EY: VseS, Zwsa = ZpM(s|s’,a')w5/a/}.
a s’,a’

Value of the game:

T -1 fr— s f KL) .
e wesg(F/)\A) M’eIRIt(M);wsa mime (s, a)

Lower Bound: A two-player zero-sum game

The sample complexity of any §-PC algorithm satisfies: for any M with a

unique optimal policy,

. . EM’A[’T]
I|5nJQf W > To(M),

here To(M) ™" = saKL 1
where T,(M) wesslzj&) w eAIt(M Zw Mmime (s, a). (

~—

where:
o Alt(M) ={M’: 7* is not optimal in M’} = alternative MDPs.
e QM)={weX: VseS, Y, we= Y pm(sls’,a)wsa} the set
of navigation-constrained allocations. o
o KLujy(s,a) = KL(qum(s, a), qu(s, a)) + KL(prm(s, a), pu(s, a))

Upper Bound

We propose an algorithm, MDP-Navigate-and-Stop (MDP-NaS).

MDP-NaS is d-Probably Correct. If the algorithm has access to an
optimization oracle that solves the minimization sub-problem of the LB, then

E[75] = O(To(M)) log(1/9).

Upper Bound

We propose an algorithm, MDP-Navigate-and-Stop (MDP-NaS).

MDP-NaS is d-Probably Correct. If the algorithm has access to an
optimization oracle that solves the minimization sub-problem of the LB, then

E[75] = O(To(M)) log(1/9).

Otherwise, it's sample complexity is bounded by:

. 1+ Var (s 3)[\//)(/1] 1)
(@ inf max P + — log(1/6
(UJEQ(M) (s,a):a#m*(s) wsaAga mslnws’,r*(s)Arznin(l — ’}/)3 g(/)

o Ay, = Vi (s) — Qr(s, a): sub-optimality gap.

o Amin = mins,#ﬂ*(s) Agy: minimum gap.

o Var,s o) [Vi] = Vepr(ls,a)[Vig(s')]: variance of next-state value
function.

Take-away message

1. Instance specific Lower Bound: Two-player game, similar to the case
of generative model but with a restricted strategy set for the
algorithm.

2. First Algorithm with problem-specific guarantees in the online
setting !

3. Algorithm can be instance-optimal given an optimization oracle that
solves the best response problem.

10

Novelties in Algorithm design

Recipe for instance-optimality in Pure Exploration

e Suppose we know how to compute the optimal allocation vector

w* (M) = arg max inf we, KL (s, a).
(M) VS M’EAIt(M)SZQ: M (5, 3)

11

Recipe for instance-optimality in Pure Exploration

e Suppose we know how to compute the optimal allocation vector

w* (M) = arg max inf we, KL (s, a).
(M) VS M’EAIt(M)SZQ: M (5, 3)

e All we need is a sampling rule which ensures that for all (s, a):

No(0)/t = wi(M).

11

Recipe for instance-optimality in Pure Exploration

e Suppose we know how to compute the optimal allocation vector

w* (M) = arg max inf we, KL (s, a).
(M) VS M’EAIt(M)SZQ: M (5, 3)

e All we need is a sampling rule which ensures that for all (s, a):

No(0)/t = wi(M).

e Multi-armed bandits and MDPs with a generative model (simulator):

1. Forced exploration: sample (st+1,ar+1) from {(s,a) : Ne(t) < /t}
if not empty.

11

Recipe for instance-optimality in Pure Exploration

e Suppose we know how to compute the optimal allocation vector

w* (M) = arg max inf we, KL (s, a).
(M) VS M’EAIt(M)SZQ: M (5, 3)

e All we need is a sampling rule which ensures that for all (s, a):

No(0)/t = wi(M).

e Multi-armed bandits and MDPs with a generative model (simulator):

1. Forced exploration: sample (st+1,ar+1) from {(s,a) : Ne(t) < /t}
if not empty.

2. Tracking: Otherwise sample
(5t11,ar41) € argmin, , Nea(t)/t — w;*a(ﬂt).

11

Recipe for instance-optimality in Pure Exploration

e Suppose we know how to compute the optimal allocation vector

w (M) =argmax inf wsaKL pq a0 (8,).
() weQ(M) M’ eAI(M); ! ()

e All we need is a sampling rule which ensures that for all (s, a):

No(0)/t = wi(M).

e Multi-armed bandits and MDPs with a generative model (simulator):

1. Forced exploration: sample (st+1,ar+1) from {(s,a) : Ne(t) < /t}
if not empty. Ensures consistency of w*(/\//ﬂ)!

2. Tracking: Otherwise sample
(st+1,arr1) € argming , Neo(t)/t — w(M_). Ensures efficient

sampling strategy on the long run.

11

D-Navigation: A novel sampling rule

e We can't choose the next state the online setting ! = Tracking is
no longer applicable.

12

D-Navigation: A novel sampling rule

e We can't choose the next state the online setting ! = Tracking is
no longer applicable.

e Define oracle policy:
(M)
V(s,a) € S x A, w°(M)(als éL.
(5.2) (M)(als) & == s

w* is the stationary distribution of the Markov Chain Py ..

12

D-Navigation: A novel sampling rule

e We can't choose the next state the online setting | == Tracking is
no longer applicable.

e Define oracle policy:

wgp(M)
P beaWip (M)

is the stationary distribution of the Markov Chain P,..

V(s,a) €S x A, 7°(M)(als) 2

w*

o Play a; ~ m(.|s¢) where:

Tt = EtTy + (1 — €t)7TO(M\t).

12

D-Navigation: A novel sampling rule

e We can't choose the next state the online setting ! = Tracking is
no longer applicable.

e Define oracle policy:

W(s,a) €S x A, mo(M)(als) £ %

is the stationary distribution of the Markov Chain P,..

w*

e Play a; ~ m¢(.|s) where:
me = ey + (1 — €t)7TO(.K/l\t)

(my is the uniform policy)

12

D-Navigation: A novel sampling rule

e We can't choose the next state the online setting ! = Tracking is
no longer applicable.

e Define oracle policy:

wgp(M)
P bea Wi (M)

w* is the stationary distribution of the Markov Chain Pjo.

V(s,a) € S x A, 7w°(M)(als) =

e Play a; ~ m(.|st) where:
T = E¢Ty + (1 — 515)7'('0(./(/1\1»).
€¢ is an exploration parameter that needs careful tuning (check the
paper !)

12

D-Navigation: Why does it work ?

(S0,@0,---,5¢a¢,...) = (St, ar)e>0 is the realization of
Non-homogeneous (and history dependent !) Markov Chain with
values in S x A with kernels (Py,)¢>1.

e Denote by (w;)¢>1 the stationary distributions.
e Using forced exploration: " (M) a.s, hence
—r 00
wr — w*(M).
t—00
o Nsy(t)/t — wk,(M) is the result of an ergodic theorem.

t—o00

13

D-Navigation: Why does it work ?

Theorem 2 (Propositions 12, 8 in the paper)

Denote by P; the kernel of m; and by w; its stationary distribution. Assume
that:

e There exists two constants C; and p; such that for all n > 1:
[P — Wl < Cept

where W; is a rank-one matrix whose rows are equal to wy.

e UNIFORM SPEED: Define L; = C;(1 — p;)~!. Then limsupL; < co a.s.

t—o0

e STABILITY: TV(P¢i1, Pt) =2 0 as.

Then for all (s, a):
Nsa(t)/t = we,.

14

Conclusion

Conclusion

1. First Algorithm with problem-specific sample complexity in the
online setting !

2. Algorithm can be instance-optimal given an optimization oracle.

3. Although tracking is not possible, achieving some target oracle
allocation is still possible through adaptive control of the trajectory,
and a powerful ergodic theorem !

4. First step towards understanding problem-specific e-optimal policy
identification.

15

Thanks !

	Introduction
	Main Results
	Novelties in Algorithm design
	Conclusion

